6. Referências Bibliográficas

ABEL, Andrew B. (1983), Optimal Investment Under Uncertainty, *American Economic Review*. Vol. 73: 228-223.

AKERLOF, George (1970), The Market for Lemons: Qualitative Uncertainty and the Market Mechanism, *Quarterly Journal of Economics*. Vol. 84: 488-500.

AMIN, Kaushik e Victor Ng (1993), Option Valuation with Systematic Stochastic Volatility, *Journal of Finance*. Vol.48: 881-910.

AMRAN, Martha e Kulatilaka Nalin (1999), Real Options: Managing Strategic Investments in an Uncertain World, *Harvard University Press*.

ARROW, Kenneth (1964), The Role of Securities in the Optimal Allocation of Risk Bearing, *Review of Economics Studies*. Vol. 31: 91-96.

BLACK, Fischer (1976), Studies in Price Volatility Changes, in Proceedings of the 1976 meetings of the Business and Economic Statistics Section, *American Statistical Association*: 177-181.

BLACK, Fischer (1989), How to Use the Holes in Black-Scholes, *Journal of Applied Corporate Finance*. Vo.1: 76-73.

BLACK, Fischer e Myron Scholes (1973), The Pricing of Options and Corporate Liabilities, *Journal of Political Economy*. Vol. 81: 637-654.

BOLLERSLEV, Tim (1986), Generalized Autoregressive Conditional Heteroscedasticity, *Journal of Econometrics*. Vol. 31: 307-327.

BOLLERSLEV, Tim, Ray Chou e Kenneth Kroner (1992), ARCH Modeling in Finance: A Review of the Theory and Empirical Evidence, *Journal of Econometrics*. Vol. 52: 5-59.

BRENNAN, Michael e Lenos Trigeorgis (2000), Project Flexibility, Agency, and Competition – New Developments in the Theory and Application of Real Options, *Oxford University Preess*.

BRENNAN, Michael e Eduardo Schwartz (1985), Evaluating Natural Resourse Investments, *Journal of Business*. Vol. 58: 135-57.

CAMPBELL, John, Andrew Lo e Craig Mackinlay (1997), The Econometrics of Financial Markets, *Princeton University Press*.

COCHRANE, John (2001), Asset Pricing, Princeton University Press.

CONSTANTINIDES, George (1978), Market Risk Adjustment in Project Valuation, *Journal of Finance*. Vol. 33: 603-616.

COX, John, Jonathan Ingersoll e Stephen Ross (1985), A Theory of the Term Structure of Interest Rates, *Econometrica*. Vol. 53: 385-407.

DEGROOT, Morris (1986), Probability and Statistics. Addison-Wesley Longman.

DIAS, Marco Guimarães (1996), Investimento Sob Incerteza em Exploração e Produção de Petróleo, Dissertação de Mestrado. *Departamento de Engenharia Industrial-Puc-Rio*.

DIXIT, Avinash (1989), Entry and Exit under Uncertainty, *Journal of Political Economy*. Vol. 97: 620-638.

DIXIT, Avinash e Robert Pindyck (1994), Investment under Uncertainty, *Princeton University Press*.

DIXIT, Avinash e Robert Pindyck e Sigbjon Sodal (1997), A Markup Interpretation of Optimal Rules for Irreversible Investment, *NBER Working Paper* # 5971.

DUAN, Jin-Chuan (1995), The Garch Option Pricing Model, *Mathematical Finance*. Vol.5: 13-32.

DUFFIE, Darrell (1998), Black, Merton, and Scholes – Their Central Contributions to Economics, *Scandinavian Journal of Economics*. Vol. 100: 441-424.

ENGLE, Robert (1982), Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of UK Inflation, *Econometrica*. Vol. 50: 987-1008.

ENGLE, Robert e Andrew Patton (2001), What Good is a Volatility Model?, *Quantitative Finance*. Vol. 1: 237-245.

FISCHER, Irving (1930), Theory of Interest. Macmillan.

HASSET, Kevin e Gilbert Metcalf (1994), Investment with Uncertain Tax Policy: Does Random Tax Policy Discourage Investment?, *NBER Working Paper # 5971*.

HUANG, Chi-Fu e Robert Litzenberger (1988), Foundations for Financial Economics, *Prentice-Hall*.

HULL, John e Alan White (1987), The Pricing of Options on Assets with Stochastic Volatilities, *Journal of Finance*. Vol. 42: 281-299.

GONÇALVES, Frankilin e Priscilla Medeiros (2002), Opcões Reais e Regulação: O Caso das Telecomunicações no Brasil, *Anais do 2º Encontro Brasileiro de Finanças*.

GRENADIER, Steven (2002), Option Exercise Games: An Application to the Equilibrium Investment Strategies of Firms, *Review of Financial Studies*. Vol. 15: 691-721.

INGERSOLL, Jonathan e Stephen Ross (1992), Waiting to Invest: Investment and Uncerteinty, *Journal of Business*. Vol. 65: 1-29.

JORGENSON, Dale (1963), Capital Theory and Investment Behavior, *American Economic Review*. Vol. 53: 247-259.

KUNGL.VETENSKAPSAKADEMIEN (1997), The Royal Swedish Academy of Sciences, *The Press Release: The Sveriges Riksbank (Bank of Sweden) Prize in Economic Sciences in Memory of Alfred Nobel for 1997.*

LAMONT, Owen (2000), Guilty as Charged, Violations of the Law of One Price in Financial Markets, *Mimeo, Graduate School of Business, University of Chicago*.

LARSON, Harold (1982), Introduction to Probability Theory and Statistical Inference. *John Wiley & Sons*.

LO, Andrew (1988), Maximum Likelihood Estimaton of Generalized Itô Processes with Discretely Sampled Data, *Econometric Theory*. Vol. 4: 231-247.

LUCAS, Robert e Edward Prescott (1971), Investment Under Uncertainty, *Econometrica*.Vol. 39: 659-681.

MAJD, Saman, e Robert Pindyck (1987), Time to Build, Option Value, and Investment Decisions, *Journal of Financial Economics*. Vol. 18: 7-27.

MCDONALD, Robert, L. e Daniel R. Siegel (1985), Investment and the Valuation of Firms when there is an Option to Shut Down, *International Economic Review*. Vol. 26: 331-349.

MCDONALD, Robert, L. e Daniel R. Siegel (1986), The Value of Waiting to Invest, *Quarterly Journal of Economics*. Vol. 101: 707-727.

MERTON, Robert (1973a), An Intertemporal Capital Asset Pricing Model, *Econometrica*. Vol. 41: 867-887.

MERTON, Robert (1973b), Rational Theory of Option Pricing, *Bell Journal of Economics and Management Science*. Vol. 4: 141-183.

MERTON, Robert (1980), On Estimating the Expected Return on the Market: An Exploratory Investigation, *Journal of Financial Economics*. Vol. 8: 323-361.

MERTON, Robert (1990), Continuous-Time Finance, *Blackwell Publishers*, *Cambridge*, *MA*.

NELSON, Daniel (1990), ARCH Models as Diffusion Aproximations, *Journal of Econometrics*. Vol. 45: 7-38.

PADDOCK, James, Daniel Siegel e James Smith (1988), Option Valuation of Claims on Real Assets: The Case of Offshore Petroleum Leases, *Quarterly Journal of Economics*. Vol. 103: 479-508.

PINDYCK, Robert (1988), Irreversible Investment, Capacity Choice, and the Value of the Firm, *American Economic Review*. Vol. 79: 969-985.

PINDYCK, Robert (1991a), Irreversibility, Uncertainty, and Investment, *Journal of Economic Literature*. Vol. 29: 110-1152.

PINDYCK, Robert (1991b), Investments of Uncertain Cost, *Journal of Financial Economics*. Vol. 34: 53-76.

PINDYCK, Robert (2002), Lectures on Real Options, *Mimeo, Sloan School of Management, MIT.*

RAMANATHAN, Ramu (1993), Statistical Methods in Econometrics, *Academic Press*.

ROLL, Richard (1977), Critique of the Asset Pricing Theory's Tests: Part I, *Journal of Financial Economics*. Vol. 4: 129-176l.

ROMER, David (1996), Advanced Macroeconomics, New York: McGraw-Hill.

ROSENBERG, Barr (1972), The Behavior of Random Variables with Nonstationary Variance and the Distribution of Security Prices, *Research Program in Finance Working Paper #11, University of California, Berkeley.*

SCHWARTZ, Eduardo e Lenos Trigeorgis (2001), *Real Options and Investment Under Uncertainty;* Classical Readings and Recent Contributions, Cambridge: MIT Press.

SCHAWNEE NEWS-STAR, THE (1997), Two Americans win Nobel prize for economics, 14 de outubro.

TOBIN, James (1969), A General Equilibrium Approach to Monetary Theory, *Journal of Money Credit and Banking*.Vol.1: 15-29.

TOURINHO, Octavio (1979), The Valuation of Reserves of Natural Resourses, Unpublished Ph.D.dissertation, University of California, Berkeley.

TRIGEORGIS, Lenos (1996), Real Options, Managerial Flexibility and Strategy in Resource Allocation, *MIT Press*.

VARIAN, Hal (1987), The Arbitrage Principle in Financial Economics, *Economic Perspectives*, Vol.1: 55-72.

VARIAN, Hal (1992), Microeconomic Analysis, New York: W.W. Norton.

Apêndice A

A.1. Estimação por Máxima Verossimilhança do Processo de Difusão

O princípio da máxima verossimilhança nos diz que a escolha do parâmetro deve proporcionar uma maior ocorrência dos dados observados. Neste caso, os parâmetros são números e não variáveis aleatórias como na estatística *Bayesiana*. Para implementar esta metodologia precisamos saber a distribuição de probabilidade da amostra de dados $\{X_t\}$, dado um parâmetro livre θ do modelo. Esta distribuição de probabilidade é chamada de função verossimilhança $f(\{X_t\};\theta)$. Logo, de acordo com o princípio da máxima verossimilhança, devemos escolher o parâmetro θ tal que:

$$\hat{\theta} = \arg \max_{\{\theta\}} f(\{X_i\}; \theta) \tag{A1}$$

Como a função logaritmo é crescente monotônica, maximizar o logaritmo desta distribuição de probabilidade é o mesmo que maximizar sua função. Desta forma é comum se trabalhar com a seguinte expressão:

$$L(\lbrace X_t \rbrace; \theta) = LN f(\lbrace X_t \rbrace; \theta) \tag{A2}$$

Encontrar a função de verossimilhança não é uma tarefa fácil. No estudo de série de tempo, a melhor maneira para encontrá-la é encontrar primeiro a função verossimilhança condicional em logaritmo, $f(X_t|X_{t-1},X_{t-2},...,X_0;\theta)$, que significa a maior chance de se obter X_{t+1} , dado os valores observados passados, X_{t} , X_{t-1} ,..., e dados os valores dos parâmetros θ . Como a probabilidade conjunta é o produto das probabilidades condicionais, a função logaritmo verossimilhança é a soma das funções logaritmo verossimilhança condicionais:

$$L(\{X_t\};\theta) = \sum_{t=1}^{T} LN f(X_t | X_{t-1}, X_{t-2}, ..., X_0; \theta)$$
 (A3)

Assumindo distribuição normal para os desvios em relação à média, $\varepsilon_t = X_t - E(X_t | X_{t-1}, X_{t-2}, ..., X_0; \theta)$, temos que:

$$L(\lbrace X_{t}\rbrace;\alpha;\sigma) = -\frac{T}{2}LN(2\pi|\Sigma|) - \frac{1}{2}\sum_{t=1}^{T}\varepsilon_{t}\Sigma^{-1}\varepsilon_{t}$$
(A4)

Os estimadores obtidos possuem algumas propriedades assintóticas de grande utilidade. A distribuição das estimativas é assintoticamente normal e o estimador é assintoticamente eficiente, ou seja, nenhum outro estimador proporciona uma menor matriz de covariâncias definida pela matriz de informação de *Fischer*.

Através de algumas condições de regularidade, $\hat{\theta}$ é consistente e possui a seguinte distribuição assintótica:

$$\sqrt{n}(\hat{\theta} - \theta) \stackrel{a}{\sim} N(0, I^{-1}(\theta)); \quad I(\theta) \equiv \lim_{n \to \infty} -E\left(\frac{1}{n} \frac{\partial^2 L(\theta)}{\partial \theta \partial \theta}\right)$$
 (A5)

Para estimar o parâmetro $\hat{\theta}$ por máxima verossimilhança a partir dos dados históricos, estamos supondo que possuímos uma seqüência de n+1 observações passadas de X(t) colhidas em uma amostra de datas não estocásticas $to < t1 < \dots < tn$, que não possuem intervalos necessariamente iguais. No caso de estimações de parâmetros para o processo de difusão, a função densidade de transição f_K deve possuir uma forma fechada, o que muitas vezes não é o caso. Segundo o teorema demonstrado por LO (1988), podemos caracterizar f_K como uma solução de uma equação diferencial parcial, fixando as variáveis condicionais X(k-1) e t_{K-1} e permitindo que f_K seja uma função de X(k) e t_K . Em alguns casos, mesmo obtendo f_K , os estimadores de máxima verossimilhança não satisfazem as condições de consistência e normalidade assintótica. No capítulo 3, realizamos a inferência considerando as taxas de retorno de X(t), $r(t) \equiv LN (X(t)/X(t-1))$. Obtemos uma seqüência estacionária r(1), r(2), ..., r(n) de onde podemos extrair os

$$\frac{\partial f_{\scriptscriptstyle K}}{\partial t} = -\frac{\partial (a f_{\scriptscriptstyle K})}{\partial X} + \frac{1}{2} \frac{\partial^2 (b^2 f_{\scriptscriptstyle K})}{\partial X^2}, \text{ sujeita à condição inicial}$$

$$f_K(X(k),t_{k-1}|X(k-1,t_{k-1}) = \delta(X(k)-X(k-1))$$

onde $\delta(X(k) - X(k-1))$ é uma função *Delta-Dirac* centrada em X(k-1). Em relação à função *Delta-Dirac* ver HUANG e LITZENBERGER (1988) p. 137-141 e MERTON (1990) p. 441-448.

 $^{^{1}}$ Segundo LO (1988), $f_{K}\,$ deve satisfazer a equação de Folker-Planck :

estimadores dos parâmetros do processo de difusão, em particular o estimador de σ . Aplicando o lema de Itô em r(X,t)=LNX(t) obtemos:

$$dr = d\ln X = (\mu - \frac{\sigma^2}{2})dt + \sigma dz \tag{A6}$$

Isto significa que considerando uma variação infinitesimal de X temos:

$$\ln X(T) - \ln X(t) \sim N[(\mu - \frac{\sigma^2}{2})(T - t), \sigma^2(T - t)]$$
 (A7)

As taxas de retorno instantâneas de X(t) são variáveis aleatórias *iid* distribuição normal de média μ - $\sigma^2/2(T-t)$ e variância $\sigma^2(T-t)$. Definindo h como o período entre as observações e substituindo $\alpha = (\mu - \sigma^2/2)$, a função de verossimilhança de uma amostra de retornos possui o seguinte formato:

$$f(r_0, ..., r_n; \alpha, \sigma) = \prod_{k=0}^{n} f_k = (2\pi\sigma^2 h)^{-\frac{n}{2}} e^{-\left\{\frac{1}{2h} \sum_{k=0}^{n} \left[\frac{r_K(h) - \alpha h}{\sigma}\right]^2\right\}}$$
(A5)

$$L(\alpha, \sigma) = LN[f(r_0, ..., r_n; \alpha, \sigma)] = \sum_{k=0}^{n} LN(f_K) = -\frac{n}{2}LN(2\pi\sigma^2 h) - \frac{1}{2\sigma^2 h} \sum_{k=1}^{n} (r_K(h) - \alpha h)^2$$

os estimadores de máxima verossimilhança serão:

$$\frac{\partial L(\alpha, \sigma)}{\partial \alpha} = 0 \quad ; \quad \frac{\partial L(\alpha, \sigma)}{\partial \alpha} = 0 \rightarrow \hat{\alpha} = \frac{1}{nh} \sum_{k=1}^{n} r_{k}(h) \; ; \hat{\sigma}^{2} = \frac{1}{nh} \sum_{k=1}^{n} (r_{k}(h) - \hat{\alpha}h)^{2} \tag{A6}$$

Como os retornos são *iid* com distribuição normal, as condições de regularidade para a consistência e normalidade assintótica dos estimadores são satisfeitas.

A.2. Modelo Garch (1,1)

Uma observação básica sobre o retorno dos ativos financeiros em um curto período é que altos retornos são geralmente acompanhados de retornos elevados. A volatilidade do retorno dos ativos possui uma correlação serial. Para capturar esta correlação serial verificada através das funções de autocovariâncias das volatilidades, ENGLE (1982) propôs a classe de modelos autorregressivos

condicionais na variância ou Arch. A variância condicional é uma função *lag* das inovações ao quadrado:

$$\sigma_t^2 = \omega + \alpha(L)\varepsilon_t^2 \tag{A7}$$

onde $\alpha(L)$ é um operador polinomial de *lags*. Para manter a variância condicional positiva, $\alpha(L)$ e ω devem ser funções não negativas. Com o objetivo de modelar a persistência nos movimentos da volatilidade, BOLLERSLEV (1986) propôs o modelo Garch, modelo autoregressivo condicional heterocedástico generalizado

$$\sigma_t^2 = \omega + \beta(L)\sigma_{t-1}^2 + \alpha(L)\varepsilon_t^2 \tag{A8}$$

por analogia aos modelos Arma, chamamos esta forma funcional de Garch (p,q), onde a ordem do polinômio B(L) é p e a ordem do polinômio $\alpha(L)$ é q.

Condicional nos parâmetros do modelo e numa estimativa da variância inicial, os dados possuem distribuição normal e, desta forma, podemos construir uma função de verossimilhança de forma recursiva. Definindo o vetor de parâmetros estimados por θ , denotamos $\sigma_t(\theta)$ como o desvio padrão condicional no tempo t dados os parâmetros do modelo e o histórico dos retornos. Desta forma, temos que:

$$v_{t+1}(\theta) \equiv \frac{\mathcal{E}_{t+1}}{\sigma_t(\theta)} \tag{A9}$$

Quando θ contem o verdadeiro parâmetro do modelo $v_t(\theta)$ é iid com função densidade dada por:

$$g(v_{t+1}(\theta)) = \frac{1}{\sqrt{2\pi}} e^{\frac{-v_{t+1}(\theta)^2}{2}}$$
(A10)

Desta forma, podemos construir a função verossimilhança e estimar os parâmetros do modelo. As estimações do modelo Garch (1,1) no capítulo 2, formando as curvas de volatilidade expostas nos gráficos (4.9)-(4.10), produziram os seguintes coeficientes para as séries de tempo estudadas:

	Coeficiente	Desvio Padrão	Estatística -z	Prob.
С	0.000977	0.000815	1198012	0.230900
ω	0.000078	0.000022	3501703	0.000500
α	0.162789	0.033300	4888607	0.000000
β	0.730246	0.054025	1351684	0.000000

Tabela A.1 – Coeficientes do Modelo Garch (1,1) para os Retornos da Petrobras

	Coeficiente	Desvio Padrão	Estatística -z	Prob.
С	0.000975	0.000861	1131606	0.257800
ω	0.000018	0.000006	3115889	0.001800
α	0.060112	0.007518	7995923	0.000000
β	0.915826	0.011899	7696959	0.000000

Tabela A.2 – Coeficientes do Modelo Garch (1,1) para os Retornos do Petróleo

	Coeficiente	Desvio Padrão	Estatística -z	Prob.
С	-0.000086	0.000444	-0.194419	0.845800
ω	0.000006	0.000002	2827433	0.004700
α	0.081106	0.015380	5273330	0.000000
β	0.893619	0.019928	4484192	0.000000

Tabela A.3- Coeficientes do Modelo Garch (1,1) para os Retornos das Oil Majors

	Coeficiente	Desvio Padrão	Estatística -z	Prob.
С	-0.001006	0.000671	-1499535	0.133700
ω	0.000018	0.000008	2145799	0.031900
α	0.061562	0.018818	3271397	0.001100
β	0.897908	0.030715	2923383	0.000000

Tabela A.4 – Coeficientes do Modelo Garch (1,1) para os Retornos da Carteira Telecom Int.

	Coeficiente	Desvio Padrão	Estatística -z	Prob.
С	-0.001035	0.001111	-0.932118	0.351300
ω	0.000061	0.000021	2964141	0.003000
α	0.089577	0.019823	4518829	0.000000
β	0.857289	0.028330	3026134	0.000000

Tabela A.5 – Coeficientes do Modelo Garch (1,1) para os Retornos da Telemar

	Coeficiente	Desvio Padrão	Estatística -z	Prob.
С	-0.000713	0.000957	-0.74482	0.456400
ω	0.000055	0.000025	2207828	0.027300
α	0.070216	0.019017	3692185	0.000200
β	0.862786	0.042876	2012265	0.000000

Tabela A.6 – Coeficientes do Modelo Garch (1,1) para os Retornos da Carteira Telecom Br

Apêndice B

B.1. Curvas para os Valores da Opção de Espera no Setor de **Telecomunicações**

O cálculo dos valores das opções reais de espera foi realizado através da regra ótima de decisão para o investimento utilizando as seguintes variáveis:

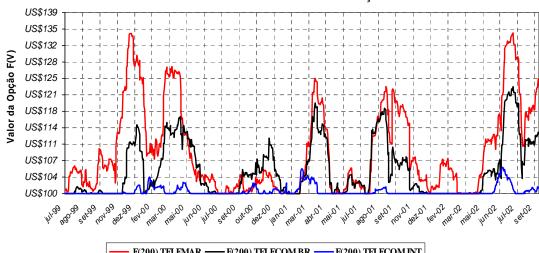
- I Custo do Investimento: US\$ 100 milhões
- V Valor do Projeto de investimento: US\$ 200 milhões
- σ-Volatilidade: Curvas de Volatilidade Anuais de 30, 90, 180 e 360 dias
- δ Fluxo de Caixa do Projeto: 8.00% ao ano
- r Taxa de Juros Real sem Risco: 4.00% ao ano

F(V)- Valor da Opção Real:

Se
$$V > V^* \rightarrow F(V) = V-I$$

Se
$$V \le V^* \to F(V) = \frac{(\beta_1 - 1)^{(\beta_1 - 1)}}{(\beta_1)^{\beta_1} I^{\beta_1 - 1}} V^{\left(\frac{1}{2} - \frac{(r - \delta)}{\sigma^2} + \sqrt{\left[\frac{(r - \delta)}{\sigma^2} - \frac{1}{2}\right]^2 + \frac{2r}{\sigma^2}}\right)}$$

Gráfico B.1: Curva para o Valor da Opção do Projeto - F(200) Volatilidade de 30 dias-Telecomunicações

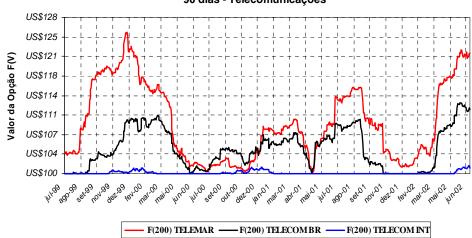


F(200) TELEMAR F(200) TELECOM BR F(200) TELECOM INT

F(V)	Máximo	Mínimo	Média	Variância
Telemar	134.21	100.00	105.12	86.18
Telecom Br	122.69	100.00	102.43	33.56
Telecom Int	101.37	100.00	100.00	0.08

Tabela B.1 – Estatísticas do Valor da Opção de Espera do Setor de Telecomunicações

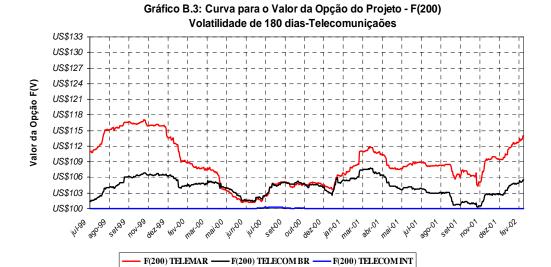
Gráfico B.2: Curva para o Valor da Opção do Projeto - F(200) Volatilidade de 90 dias - Telecomunicações



F(V)	Máximo	Mínimo	Média	Variância
lemar	125.29	100.00	107.61	46.86

Tel Telecom Br 112.73 100.00 104.05 12.26 Telecom Int 101.37 100.00 100.00 0.08

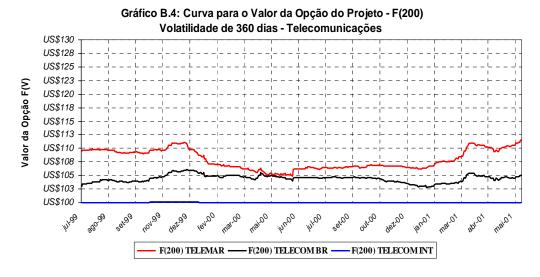
Tabela B.2 – Estatísticas do Valor da Opção de Espera do Setor de Telecomunicações



F(200) TELEMAR -

F(V)	Máximo	Mínimo	Média	Variância
Telemar	117.11	101.16	108.19	17.83
Telecom Br	107.86	100.26	104.35	2.90
Telecom Int	100.33	100.00	100.00	0.00

Tabela B.3 – Estatísticas do Valor da Opção de Espera do Setor de Telecomunicações



F(V)	Máximo	Mínimo	Média	Variância
Telemar	111.48	100.00	105.51	92.18
Telecom Br	106.06	102.78	104.58	0.46
Telecom Int	100.19	100.00	100.00	0.00

Tabela B.4 – Estatísticas do Valor da Opção de Espera do Setor de Telecomunicações

B.2. Curvas para o Valor da Opção de Espera no Setor de Petróleo

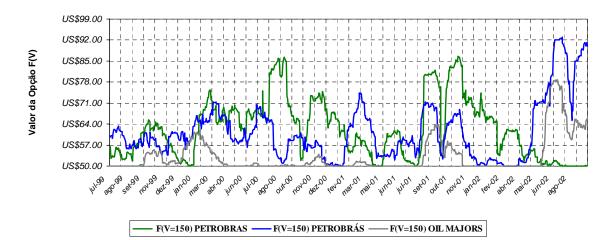
O cálculo dos valores das opções reais de espera foi realizado através da regra ótima de decisão para o investimento utilizando as seguintes variáveis:

- I Custo do Investimento: US\$ 100 milhões
- V Valor do Projeto de investimento: US\$ 150 milhões
- σ Volatilidade: Curvas de Volatilidade Anuais de 30, 90, 180 e 360 dias
- δ- Fluxo de Caixa do Projeto: 8.00% ao ano
- r Taxa de Juros Real sem Risco: 4.00% ao ano
- F(V)- Valor da Opção Real :

Se
$$V > V^* \rightarrow F(V) = V-I$$

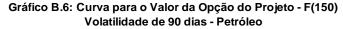
$$Se \ V \leq V^* \longrightarrow = F(V) = \frac{(\beta_1 - 1)^{(\beta_1 - 1)}}{(\beta_1)^{\beta_1} I^{\beta_1 - 1}} \ V^{\left(\frac{1}{2} - \frac{(r - \delta)}{\sigma^2} + \sqrt{\left[\frac{(r - \delta)}{\sigma^2} - \frac{1}{2}\right]^2 + \frac{2r}{\sigma^2}}\right)}$$

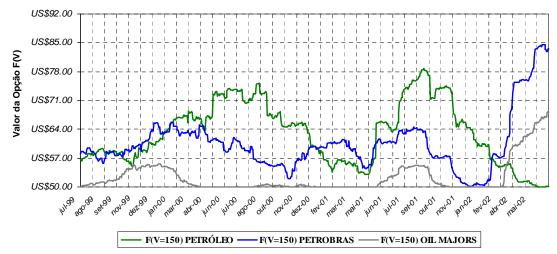
Gráfico B.5: Curva para Valor do Projeto F(150)
Volatilidade de 30 dias



F(V)	Máximo	Mínimo	Média	Variância
Petróleo	86.49	50.00	61.12	94.98
Petrobras	84.59	50.13	59.51	43.83
Oil majors	68.33	50.00	50.38	14.84

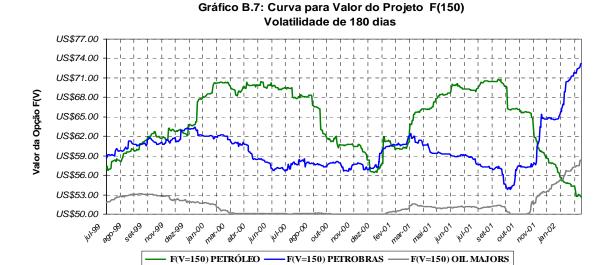
Tabela B.5 – Estatísticas do Valor da Opção de Espera do Setor de Petróleo





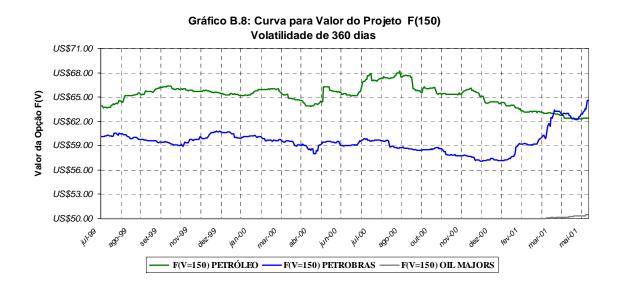
F(V)	Máximo	Mínimo	Média	Variância
Petróleo	68.21	62.27	65.38	1.73
Petrobras	84.59	50.13	59.51	43.83
Oil majors	68.33	50.00	50.38	14.84

Tabela B.6 - Estatísticas do Valor da Opção de Espera do Setor de Petróleo



F(V)	Máximo	Mínimo	Média	Variância
Petróleo	70.81	52.63	65.65	23.53
Petrobras	73.17	53.81	59.38	10.29
Oil majors	58.35	50.00	51.01	2.73

Tabela B.7 – Estatísticas do Valor da Opção de Espera do Setor de Petróleo



F(V)	Máximo	Mínimo	Média	Variância
Petróleo	68.21	62.27	65.38	1.73
Petrobras	64.59	57.06	59.50	1.86
Oil majors	50.53	50.00	50.00	0.01

Tabela B.8 – Estatísticas do Valor da Opção de Espera do Setor de Petróleo